Estimation of oxygen fugacity according to amphibole chemical composition in Vash granitoid , NW Natanz(Esfahan,Iran)

Behafarin Shojaei

Department of Geology, Islamic Azad University ,Khoresgan Branch. E-mail: <u>behafarin.shojaei@yahoo.com</u>

Abstract

The Vash granitoid located in west of Natanz and is a part of Urumieh-Dokhtar volcanic belt. The plutonic composition is granodiorite to tonalite. Based on microprobe analysis amphiboles of Vash is monoclinic calcic amphibole and magnesio hornblende ,probably, the biotite is annite and the chlorite is penine. The chemical features indicating low temperature (744⁰c) low pressure (1.4kbar) and medicate to high fO2 (-14.67). High oxygen fugacity shows which, this granitoid has been formed in oxidation conditions. This conditions adopted with magmatic granites in subduction zones. Considering this study granitic magma is met- aluminous and I-type granite that formed by crystallization of subducted slab. The magma is a melt probably formed by partial melting of the oceanic crust originated from Neothetian Central Iran. **Key word:** granitoid , Vash , magnesio hornblende, met aluminous ,I-type, ,fO2

Introduction

The Vash granitoid is located in 33^038 $\cdot 38^0$ $\cdot 43^\circ 51^045^\circ - 51^034^\circ$ oligo-micen in age [1](Fig 1). The Vash granitoid includes tonalite, granodiorite, plutons. It contain plagioclase \pm amphibole \pm biotite + K-feldspar + quartz which are common minerals occurring in felsic metaluminous (ASI \leq 1) I-type granites. Accessories include magnetite + titanomagnetite + euhedral titanite + apatite + zircon.

Analytical Equipment and Structural Formulae

Electron microprobe analyses were performed at the Iran mineral processing Research center using a Cameca SX-100 instrument, equipped with 5 wavelength-dispersive spectrometers (WDS). An accelerating voltage of 15 KV and a beam current of 20 nA were used for amphibole, with a beam size of 10 μ m. Special care was taken during the calibration of the major elements; all were regularly cheeked in the course of the analyses on different standards of known composition. Structural formulae for amphibole analyses were calculated on the basis of 23 oxygen (assumed anhydrous) with site allocation as suggested by [10](Tab 1).

Amphibole Chemistry

Microprobe analyses along with structural formula for amphiboles from the Vash granitoid are shown in Table 1. Following the recommendations of Leake et al. [8,9] all the studied amphiboles are monoclinic calcic hornblendes chemically defined with respect to the standard formulae Ca₂ (Mg,Fe²⁺)₄(Al,Fe³⁺) Si₇AlO₂₂(OH)₂ as follows [Ca(M4)+ Na(M4)] > 1.34; Na(M4) < 0.67 and Mg* >0.50. Their (Na+K)_A and Ti are both always less then 0.5 atoms per formula unit (apfu), representing typical magnesio-hornblende with formulae of Ca2 [Mg4(Al,Fe³⁺)][(Si₇Al)O₂₂](OH)₂ which is distinct mafic mineral in I-type granites. The studied hornblendes are chemically homogeneous in composition and high in Mg*

=Mg/(Mg+Fe2+) ratios which range from 0.72-0.81 from 6.900 to 7.151 apfu, Features confirming magnesio-hornblende.

Pressure

To obtain an initial estimate of pressure independent of temperature for Vash amphiboles, the barometer of Schimidt [5] is utilized as equation1:

Ps(±0.6kbar) = -3.01 +4.76 Al(total),r₂=0.99(eq.1)

Where, P_s is pressure in kbar and Al^T is the total Al-content of hornblende in apfu. This barometer was derived from the results of experiments with tonalite and granodiorite, which were carried out within the near-solidus region at 665-700 °C under pressures of less than 13 Kbar [4]. Practical application of this barometer requires attention to several issues. In the present work, the main reason of the usage is that hornblende is texturally in equilibrium with the assemblage of biotite, quartz, plagioclase, K-feldspar, titanite and Fe-Ti oxides, that is the same mineral assemblage as for the Schmidt's calibration (eq. 1).Using the above geobarometer, the calculated pressures for Vash amphiboles show low values (< 3 kbar) ranging from 2.97 to 0.81 kbar (Table 1)which indicate shallow depths. Table 1: Representative electron microprobe analyses and calculated structural formulae of hornblende (23 oxygen atoms) from Vash granitoid (oxides, wt%).References : PS: Schmidt (1992)[11]; TA:Holland & Blundy (1994)[7].

Temperature

To estimate the amphiboles temperature, the calculated P_s from Schmidt's barometer (eq. 1) is substituted for the value of P in the hbld-plag thermometer of [13] Which is shown as equation 2:

$T_{A}(\pm 40c^{0}) = \{-76.95 \pm 0.79P + Y_{ab} \pm 39.4X^{A}_{Na} \pm 22.4X^{A}_{k}(41.5 \pm 2.89P)X^{M2}_{Al}\}/\{-0.0650 \pm RLn[(27X^{A}_{vac} * X^{T}_{si} * X^{pl}_{ab})/256 * X^{A}_{Na} * X^{T}_{Al}] \pm 273$

Where, T_A is amphibole temperature (°C), P is pressure (kbar) calculated from equation No. 1, $X^{Pl}_{Ab} > 0.5$: $Y_{Ab} = 0.0$ else $Y_{Ab} = 12.0 (1-X^{Pl}_{Ab})^2 - 3.0$ kJ, R = 0.0083144 kJK⁻¹ mol⁻¹, and various cation X terms are summarized in Appendix 1. The average mole fraction of albite in plagioclase (X^{Pl}_{Ab}) for each sample is summarized in Table 1. This equation was calibrated for exchange equilibrium Ed +4Qtz = Tr +Ab, and is widely applied for magnesio-hornblendes when pressure is known [4, 12]. The above equation yields low temperatures (≤ 700 °C), raging from 699 to 740 °C (Table 1).

Oxygen Fugacity (fO₂)

To clarify the fO_2 stability of the Vash granitoud, the equilibrium expression of Wones [5] is used as the following (equation 4): Log $fO_2 = -30930/T_A+14.98+0.142$ (P_S-1)/T_(A) (eq.4) Where, T_A is temperature (in Kelvin's) and P_s is pressure (in bars) calculated by equation 1 and 2, respectively (table 1).The equation 4 is applied to granitoid rocks containing titanite + magnetite + quartz assemblage with amphibole comprising intermediate to high Mg^{*} ratios [5], The conditions are adopted for the present study. Using the equation 4, log fO_2 was calculated for Vash amphiboles and listed in Table 1. The calculated values of log fO_2 show a restricted range from -11.37 to -18.49 with an average -14.93, confirming all petrological and mineralogical context that inferred oxidation conditions for the Vash granitoid. The obtained values of $\log fO_2$ are moderately low because of the slight incorporation of pressure, low values of P_s and T_A which are substituted in Wones' equation [5]. In particular, Wones' equation is mainly affected by T_A which is low in this work. This oxidation state is fairly similar to the typical low-pressure (2.5 kbar) and low-temperature (~700 °C), oxidized $(\log fO_2 = -15)$ I-type granites of the LFB [6]. A plot of $10,000/T(^{\circ}k)$ vs. $\log fO_2$ provides linear trend (Fig. 1E) well above the stability of FMQ (Fe₂ Sio₄ + Fe₃O₄ + Sio₂), between the NNO (Ni + NiO) and HM (Fe₂O₃ + Fe₃O₄) buffers, a feature attributed to Oxidized, I-type granites [6a,b].Typical ilmenite-granites contain hornblende with Fe/(Fe+Mg) ratios of 0.80 to 0.99 [3] but hornblendes from this study are low in Fe/(Fe+Mg) ratios (≤ 0.38), suggesting early magnetite crystallization and oxidized condition. The calculated T and $\log fO_2$ values for Vash amphiboles are essentially different from typical dry, S-type, ilmenite-granites of the LFB. Major differences include: higher temperature (>800 °C), wider range of T (860-1026 \pm 7 $^{\circ}$ C) and lower fO₂ (below FMQ) for S-type granites [5]. These differences are reflected from the source composition, but the availability of H_2O in I-type granites largely determines T and fO_2 conditions. In the present work, the rnge of T and p are similar to H₂O-saturated magmas of tonalite to granodiorite composition [12] in which hornblende equilibration occurs in the vicinity of the solidus (Fig. 1F).

Conclusions

The studied magnesio-hornblendes represent typical characteristics of low-temperature, lowpressure and oxidized conditions for felsic metaluminous I-type rocks of the Vash granitoid. The composition of Vash amphiboles was appropriate for utilization of principal thermobarometers, yielding the satisfactory results of *T* (699-740 °C), *P* (<2 kbar) and log fO_2 (-11.37 to -18.49) values. The range of calculated temperatures is essentially lower than the temperature range reported for mafic low-temperature I-type granites of Australia (700-800 °C). This lower temperature range is consistent with the quartzofeldspathic nature of the Vash granitoid (ASI =~1) and recommends a thermal boundary of ~700°C between mafic and felsic low-temperature I-type granites, In other words, the low-temperature I-type granites formed from magmas which crystallized in temperatures ~700 to 800 °C for mafic composition, and ~600 to 700 °C for felsic compositions.

References

1-Alae Mahabady, S,. Khalatbary Jafary, M,. 1377.,"Natanz Geology Map 1/100000".

- 2- Anderson. J.L., Smith D.R., 1995, "The Effects of Temperature and Oxygen Fugacity on the Al in Hornblende Barometer", American Mineralogist 80549-559.
- 3-Anderson J.L., 1997" Regional tilt of the Mount Stuart Batholiths, Washington, determined using Al-in-hornblende, barometry ", Implications for northward translation of Baja British Columbia: Discussion and Reply. Geological Society of America Bulletin, v.109, pp.1223-1227.
- 4-Al'meev R., Ariskin A. A., Yu. Ozerov A., Kononkove N. N., 2002, "Problems of the stoichiometry and thermobarometry of magmatic amphiboles", An example of hornblende from the andesies of Bezymyannyi Volcano, eastern Kamchatka, Geochemistry International, v. 40, No. 8 ,pp.723-738.

- 5- Burkhard D.J.M.,1991,"Temperature and redox path of biotite bearing intrusive: a method of estimation applied to S – and I-type granites from Australia: Earth and Planetary Science letters, v.104,pp.89-98.
- 6a-Chappell B.W., 2004, "High-and Low-tempreture Granites" The Ishihara Symposium : Granites and Associated Metallogenesis, GEMOC, Macquarie University, NSW,2010, Australia, pp.43.
- 6b-Chappell B. W., 2004, "Towards a unified model for granite genesis", Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 95, pp.1-10.
- 7-Holland T. Blundy J.,"Non-ideal Interaction in Calcic-Amphibols and their bearing on Amphibole and petrology 11(1994)6433-447.
- 8- Leake B.E., Woolly A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Havthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., linthoutk., Laird J., Mndarine J., Maresch W.V., Nickle E.h., Rock N.M.S., Schmucher J.C., Smith .D.C., Stephenson N.C.N, Unungaretti L., Whittaker E.J.W., Youzhi G., 1997, "Nomenclature of Amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals Names " Europian Journal of Mineralogy , 623-651.
- 9-Leake B.E., Woolley A. R., Birch W. D., Burke E. A. J., Feraris G., Grice J.D., Hawthorne F. C., Kisch H.J., Kerivovichev V.J., Schumacher J. C., Stephenson N. C. N., Whittaker J. W., 2004, "Nomenclature of amphiboles", Additions and revisions to the International Mineralogical Association's amphibole nomenclature. American Mineralogist, v. 89, pp. 883-887.
- 10-Robinson P., Spear F. S., Schumbacher J. C., Laird J., Klein C., Evans B. W., Doolan B. L., "Phase relations of metamorphic amphiboles: natural occurrence and theory", In Veblen D. R. & Ribbe P. H. (eds).1982, Amphiboles: Petrology and Experimental Phase Relations, Mineralogical Society of America, Review in mineralogy, 9B: pp. 1-227.
- Schmidt M.W. 1992, "Amphibole Composition in Tonalite as a function of Pressure an Experimental Calibration of the Al-Hornblende Barometer ". Contribution to Mineralogy and Petrology 110,304-310.
- 12-Stone D., 2000, "Temprecure and pressure variations in suites of Archean felsic plutonic rocks, Berens River Area, northwest superior province, Ontario, C anada", The Canadian Mineralogist, v.38, pp.455-470.12- Wones D. R., 1989, "Significance of the assemblage titanite + magnetite + quartz in granitic rocks ", American Mineralogist, v.74, pp.744-749.
- [13] Wones D. R., "Significance of the assemblage titanite + magnetite + quartz in granitic rocks " ,American Mineralogist, v.74, (1989) pp.744-749.

Sample	V.Am.4.1	V.Am.4.2	V.Am.4.3	V.Am.4.4	V.Am.4.5	Sample	V.Am.6.1	V.Am.6.2	V.Am.6.3	V.An.6A	V.Am.6.5
SiO2	44 <u>.</u> 777	41,407	44.24.	۴۸.۳۶۰	49.1.1	502	47 103	46213	46.631	47 854	46.350
TiO2	1,709	1.090	1,700	1.4.0	1,710	762	09'7	1.797	1325	0.783	0.659
Al2O3	۶.۰۳۹	0.09.	9.777	4.977	۶ <u>.</u> ۵۴۹	AI203	5415	6.142	6344	5.16	4519
FeO	14.174	14.49.	14,741	14.779	15,740	TeO	15 997	14.027	15.697	15 139	15.627
MnO	• 000	. 714	• 797	• 776	. 489	9460	0.798	0.171	0.116	0.79	0.553
MgO	14.779	14,191	10,710	14.070	14,149	940	14.255	11.45	14.981	11.110	13.215
CaO	11,100	11,798	11,490	11,919	1.977	0.0	10.924	10.952	11.062	10.6831	1233
Na2O	1,542	۱.۰۳۶	1 474	• 975	1.499	Na20	1.192	1347	1 490	1.200	1054
K2O	• . 449	. 497	• . ۴۸۷	. 790	. 400	E10	0.395	0.479	0.434	0 356	0.151
TSi	۶.٩٠٠	۷.۰۳۳	۶.۸۹۷	٧. • ٢٩	۶,٧٩٠	T9	6863	6516	6.655	5.942	6957
TAl	1.074	• 90•	1	. 101	1,171	TAI	0.923	1067	1.055	0.684	0543
TFe+3	•.•97		• . • ٣ •	• 119	• • • • • •	TE: 3	0.208	0.118	0.255	0.169	0.000
TTi	• • • •	• • • •	• • • •	• • • •	• • • •	Th	0.000	0.000	0.020	0.000	0.000
Sum-T	A	A	۸,۰۰۰	A	۸	Seen T	8,000	8.00	8,020	\$.000	5.(0)
CAl	• • • •	• • • •	• . • • •	• • • •	• • • •	Cál	0.000	0.00	0.000	0.000	0(0)
CFe+3	• 141	. 104	• . ٧99	• 119	• • • • • •	CFe 3	0.872	0.251	1182	1154	0.602
CTi	• 149	• 119	• 144	. 164	. 188	CTi	0.100	0.144	1182	1154	0.074
CMg	۳.۱۲۰	۳. ۰۶۹	۳. ۲۸۸	5.164	577.7	CMr	3,095	3 166	3163	3 125	1.063
CFe+2	. 111	. ^^^	• 104	• 194	• 007	Cfc 2	0.813	0.562	0.440	0.540	1 147
CMn	•.•99	• • ٧9	• • • • • •	•.•/٩	•.•54	CMo	0.098	0.059	0.054	0.096	0.100
CCa	• • • •	• • • •	• • • •	• • • •		<u>(C)</u>	0.000	0.000	0.000	0.000	0(0)
Sum-C	٥	۵	۵	۵	۵	Sim C	5,000	5.00	3.020	5.000	5.000
BMg	• • • •	• • • •	•.••	• • • •	• • • •	BMg	0.000	0.000	0.000	0.000	0(0)
BFe+2	•.••	•.••	• • • •	• • • •	• • • •	DFc 2	0.000	0.000	0.000	0.000	0.000
BMn	• • • •	•.•••	• • • •	•.••	•.•••	BMo	0.000	0.000	0.000	0.000	0(0)
BCa	1.740	1,757	1.741	1, 1.9	1.7.7	BCa	1.705	1.755	1.624	1.56	1962
BNa	• 100	• 747	• ٢١٩	• 191	• ٢٩٨	BNA	0.365	0.338	0.225	0.265	0.033
Sum-B	۲	۲	۲	۲	۲	Sum-B	2 000	1.000	2 000	2,000	2.00
ACa	•.•••	•.•••	•.•••	•.••	•.•••	ACA	0.000	0.000	0.000	0.000	0(0)
ANa AK	• 177	• • • • • • • • • • • • • • • • • • • •	•.17•	•.•٧•	. 177	AN ₂	0.285	0.121	0.125	0.000	0.265
	•.•^۴ • ۲۱۶	• 179	•	• ١٣٨	• • • • • • • • • • • • • • • • • • • •	AK	0.014	0.020	1035	0.066	0.067
Sum-A	10 119	10179	10 19.	12177	10 7.7	Sam-A	0 359	0.111	0.103	0.066	0.733
Sum-Cat						San-Cer	15 399	15.211	15 193	15.065	15 333
Sum-O	23.000	23.000 0.77	23.000 0.81	23.000 0.77	23.000 0.85	Sun-O	23,000	23000	23.000	23600	23,000
Mg* Fe/(Fe+	0.79	0.77	0.81	0.77	0.85	M_{C}^{h}	0.78	0.32	0.67	0.85	0.71
Mg)	0.35	0.36	0.32	0.35	0.34	FallFalMg)	0.38	0.35	0.37	0 17	08
X ^{Pl} _{Ab(mole)}	0.74	0.71	0.58	0.80	0.71	X ^R Joseff	0.63	0.65	0.65	0.60	0.76
Ps(kbar)	1.93	1.5	2.09	1.04	2.32	Py(klaz)	1.41	2.05	2.07	1.18	1.002
$TA(C^0)$	795.7	712.5	877.9	651	785	D(0)	/81	(47 US - 5 Oc	808 /	(6/ 3 (4.75	/05.7 19.50
Log fo ₂	-13.95	-16.40	-11.89	-18.49	-14.27	Leg ju,	11.37	15.3/	13.65	14.75	13.59

Table 1 : Electron microprobe analyses Amphiboles (Wt.%) of the sample from the granitoids of the Vash area

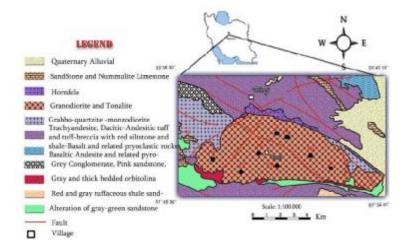


Fig1: Geological of the map of the area under study

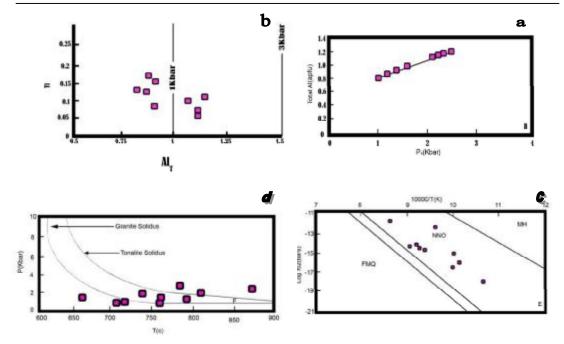


Fig 2: Compositional variation and p-T- fO_2 condition for Vash amphiboles. (A) positive correlation between calculated Ps and total Al-content of hornblende. (B) Total Al versus Ti contents with pressure contours determined according to . (C) plot of log fO_2 (bars) versus 10000/T(°K) showing oxidation state well above the FMQ, between MH and MNO buffers, with phase boundaries after Wonse [13]. (D) Diagram showing p(kb) versus T(°C) for Vash amphiboles which occur in the vicinity of solidus. The solidus lines are after [3].